Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 335: 199192, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37558054

RESUMO

Carrots collected from the Western Negev region in Israel during the winter of 2019 showed disease symptoms of chlorosis, leaf curling, a loss of apical dominance, and multiple lateral roots that were not associated with known pathogens of the carrot yellows disease. Symptomatic carrots were studied for a possible involvement of plant viruses in disease manifestations using high throughput sequencing analyses. The results revealed the presence of a waikavirus, sharing a ∼70% nucleotide sequence identity with Waikavirus genus members. Virions purified from waikavirus-positive carrots were visualized by transmission electron microscopy, showing icosahedral particle diameter of ∼28 nm. The genome sequence was validated by overlapping amplicons by designed 12 primer sets. A complete genome sequence was achieved by rapid amplification of cDNA ends (RACE) for sequencing the 5' end, and RT-PCR with oligo dT for sequencing the 3' end. The genome encodes a single large ORF, characteristic of waikaviruses. Aligning the waikavirus-deduced amino-acid sequence with other waikavirus species at the Pro-Pol region, a conserved sequence between the putative proteinase and the RNA-dependent RNA polymerase, showed a ∼40% identity, indicating the identification of a new waikavirus species. The amino-acid sequence of the three coat proteins and cleavage sites were experimentally determined by liquid chromatography-mass spectrometry. A phylogenetic analysis based on the Pro-Pol region revealed that the new waikavirus clusters with persimmon waikavirus and actinidia yellowing virus 1. The new waikavirus genome was localized in the phloem of waikavirus-infected carrots. The virus was transmitted to carrot and coriander plants by the psyllid Bactericera trigonica Hodkinson (Hemiptera: Triozidae).


Assuntos
Daucus carota , Hemípteros , Waikavirus , Animais , Waikavirus/genética , Filogenia , Doenças das Plantas
2.
Arch Virol ; 168(5): 137, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043037

RESUMO

The complete genomic sequence of a waikavirus from Chinese hackberry in Zhejiang province, China, named "hackberry virus A" (HVA), was determined using high-throughput sequencing (HTS) combined with reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) PCR. The bicistronic genomic RNA of HVA was found to consist of 12,691 nucleotides (nt), excluding the 3'-terminal poly(A) tail, and to encode a large polyprotein of 3783 amino acids (aa) and an additional 10.3-kDa protein. The aa sequences of the Pro-Pol and the CP regions of this virus share 39.8-44.2% and 25.5-36.4% identity, respectively, with currently known waikaviruses. These values are significantly below the current species demarcation threshold (< 75% and < 80% aa identity for the CP and Pro-Pol region, respectively) for the family Secoviridae, indicating that HVA represents a new species in the genus Waikavirus. This is the first report of a virus infecting Chinese hackberry.


Assuntos
Waikavirus , Waikavirus/genética , Sequência de Bases , Genoma Viral , Filogenia , Doenças das Plantas , RNA Viral/genética
3.
Virology ; 582: 106-113, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043910

RESUMO

Waikaviruses are monopartite, positive sense, single-stranded RNA viruses that cause economically important plant diseases. Despite their importance, waikaviruses are poorly understood and only ten members are currently recognized. The present study on Sequence Read Archive (SRA)-based data-driven virus discovery (DDVD) identified 22 putative new waikaviruses, nearly doubling the number of known waikaviruses, in SRA libraries of diverse plant species, from ferns to trees. Besides, a highly divergent secoviral sequence with distinct genome features was identified in a wheat transcriptome. Other significant findings of the study include identification of a new waikavirus in a library derived from diseased water chestnut sample wherein a caulimovirus was reported, prediction of coiled-coils in hypothetical protein region of waikaviral polyprotein alignment and phylogenetic clustering of tree-infecting waikaviruses. The study not only reiterates the importance of DDVD in unveiling hitherto hidden viral sequences in plant SRA libraries but also deepens our understanding of waikaviral diversity.


Assuntos
Waikavirus , Waikavirus/genética , Filogenia , Especificidade de Hospedeiro , Biblioteca Gênica , Variação Genética , Genoma Viral
4.
Virology ; 567: 57-64, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998226

RESUMO

Maize chlorotic dwarf virus (MCDV) encodes a 3C-like protease that cleaves the N-terminal polyprotein (R78) as previously demonstrated. Here, we examined amino acid residues required for catalytic activity of the protease, including those in the predicted catalytic triad, amino acid residues H2667, D2704, and C2798, as well as H2817 hypothesized to be important in substrate binding. These and other residues were targeted for mutagenesis and tested for proteolytic cleavage activity on the N-terminal 78 kDa MCDV-S polyprotein substrate to identify mutants that abolished catalytic activity. Mutations that altered the predicted catalytic triad residues and H2817 disrupted MCDV-S protease activity, as did mutagenesis of a conserved tyrosine residue, Y2774. The protease activity and R78 cleavage of orthologs from divergent MCDV isolates MCDV-Tn and MCDV-M1, and other waikavirus species including rice tungro spherical virus (RTSV) and bellflower vein chlorosis virus (BVCV) were also examined.


Assuntos
Proteases Virais 3C/química , Regulação Viral da Expressão Gênica , Genoma Viral , Waikavirus/genética , Proteases Virais 3C/genética , Proteases Virais 3C/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sistema Livre de Células/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteólise , Sementes/química , Sementes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato , Transcrição Gênica , Triticum/virologia , Waikavirus/enzimologia , Zea mays/virologia
5.
Arch Virol ; 167(2): 651-654, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35043228

RESUMO

A novel virus, tentatively named "sweetbriar rose curly-top associated virus" (SRCTaV), was identified in sweetbriar rose (Rosa rubiginosa) using high-throughput sequencing. The complete genome sequence of SRCTaV was determined and characterized. Phylogenetic analysis revealed that SRCTaV is closely related to members of the genus Waikavirus.


Assuntos
Rosa , Waikavirus , Sequência de Bases , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Vírus Satélites , Waikavirus/genética
6.
Arch Virol ; 166(11): 3207-3210, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34480637

RESUMO

A new positive-strand RNA virus genome was discovered in Camellia japonica plants. The complete genome of the virus is 12,570 nt in size, excluding the poly(A) tail, and contains one large open reading frame (ORF1) and two small open reading frames (ORF2, ORF3). ORF1 and ORF2 are homologous to sequences of waikaviruses, while ORF3 has no relatives in the databases. ORF1 encodes a putative polyprotein precursor that is putatively processed into eight smaller proteins, as in typical waikaviruses. Comprehensive analysis, including BLAST searches, genome organization and pairwise sequence comparisons, and phylogeny reconstructions, invariably placed the virus with the waikaviruses. Furthermore, due to lower amino acid sequence identity to known waikaviruses than the threshold species demarcation cutoff, this virus may represent a new species in the genus Waikavirus, family Secoviridae, and we have tentatively named it "camellia virus A" (CamVA). Finally, a field survey was conducted to assess the occurrence of CamVA in camellias and its associated symptoms.


Assuntos
Camellia/virologia , Genoma Viral , Filogenia , Waikavirus/genética , Fases de Leitura Aberta , Proteínas Virais/genética , Waikavirus/isolamento & purificação , Sequenciamento Completo do Genoma
7.
Arch Virol ; 166(5): 1325-1336, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33660107

RESUMO

Rice tungro disease (RTD) is a devastating disease of rice caused by combined infection with rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV), with one of the main symptoms being stunting. To dissect the molecular events responsible for RTD-induced stunting, the expression patterns of 23 cell-wall-related genes were examined in different rice lines with the same titers of RTSV but different titers of RTBV and in lines where only RTBV was present. Genes encoding cellulose synthases, expansins, glycosyl hydrolases, exostosins, and xyloglucan galactosyl transferase showed downregulation, whereas those encoding defensin or defensin-like proteins showed upregulation with increasing titers of RTBV. RTSV titers did not affect the expression levels of these genes. A similar relationship was seen for the reduction in the cellulose and pectin content and the accumulation of lignin. In silico analysis of promoters of the genes indicated a possible link to transcription factors reported earlier to respond to viral titers in rice. These results suggest a common network in which the genes related to the cell wall components are affected during infection with diverse viruses in rice.


Assuntos
Parede Celular/genética , Oryza/virologia , Doenças das Plantas/virologia , Tungrovirus/fisiologia , Carga Viral/fisiologia , Parede Celular/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/virologia , Polissacarídeos/metabolismo , Waikavirus/fisiologia
8.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32020909

RESUMO

Rice tungro is a serious viral disease of rice resulting from infection by two viruses, Rice tungro bacilliform virus and Rice tungro spherical virus. To gain molecular insights into the global gene expression changes in rice during tungro, a comparative whole genome transcriptome study was performed on healthy and tungroaffected rice plants using Illumina Hiseq 2500. About 10 GB of sequenced data comprising about 50 million paired end reads per sample were then aligned on to the rice genome. Gene expression analysis revealed around 959 transcripts, related to various cellular pathways concerning stress response and hormonal homeostasis to be differentially expressed. The data was validated through qRT-PCR. Gene ontology and pathway analyses revealed enrichment of transcripts and processes similar to the differentially expressed genes categories. In short, the present study is a comprehensive coverage of the differential gene expression landscape and provides molecular insights into the infection dynamics of the rice-tungro virus system.


Assuntos
Oryza/genética , Oryza/metabolismo , Transcriptoma/genética , Tungrovirus/patogenicidade , Waikavirus/patogenicidade , Ontologia Genética , Doenças das Plantas , Reação em Cadeia da Polimerase , RNA-Seq
9.
Funct Plant Biol ; 47(3): 239-249, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045562

RESUMO

Infection of viruses in plants often modifies plant responses to biotic and abiotic stresses. In the present study we examined the effects of Rice tungro spherical virus (RTSV) infection on drought response in rice. RTSV infection delayed the onset of leaf rolling by 1-2 days. During the delay in drought response, plants infected with RTSV showed higher stomatal conductance and less negative leaf water potential under drought than those of uninfected plants, indicating that RTSV-infected leaves were more hydrated. Other growth and physiological traits of plants under drought were not altered by infection with RTSV. An expression analysis of genes for drought response-related transcription factors showed that the expression of OsNAC6 and OsDREB2a was less activated by drought in RTSV-infected plants than in uninfected plants, further suggesting improved water status of the plants due to RTSV infection. RTSV accumulated more in plants under drought than in well-watered plants, indicating the increased susceptibility of rice plants to RTSV infection by drought. Collectively, these results indicated that infection with RTSV can transiently mitigate the influence of drought stress on rice plants by increasing leaf hydration, while drought increased the susceptibility of rice plants to RTSV.


Assuntos
Infecções , Oryza , Waikavirus , Secas , Humanos , Doenças das Plantas
10.
Acta Virol ; 63(2): 211-216, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31230450

RESUMO

The genome sequence of a novel species of the genus Waikavirus (the family Secoviridae), which we named Brassica napus RNA virus 1 (BnRV1), was identified in a rapeseed (Brassica napus) transcriptome dataset. The BnRV1 genome was 12,293 nucleotides long followed by a poly(A) tail. Two open reading frames (ORFs), called ORF1 and ORFX, were predicted. The larger ORF, ORF1, encodes a polyprotein of 3,471 amino acids and the smaller ORF, ORFX, overlaps ORF1 and encodes an 87 aa long protein of unknown function. The BnRV1 ORF1 polyprotein was predicted to undergo proteolytic processing to yield seven mature proteins, including an RNA-dependent RNA polymerase and three distinct coat proteins. The ORF1 and ORFX proteins share sequence similarities with the respective proteins of viruses in the genus Waikavirus, including the bellflower vein chlorosis virus, rice tungro spherical virus, and maize chlorotic dwarf virus. A phylogenetic tree inferred from a conserved segment of the polyproteins of several Secoviridae viruses confirmed that BnRV1 is a novel species of the genus Waikavirus. The BnRV1 genome sequence identified in this study may be useful for the study of waikavirus biology and waikavirus-derived diseases. Keywords: Brassica napus RNA virus 1; Waikavirus; Secoviridae; rapeseed.


Assuntos
Brassica napus , Genoma Viral , Filogenia , Waikavirus , Brassica napus/virologia , Fases de Leitura Aberta , Waikavirus/classificação , Waikavirus/genética
11.
Arch Virol ; 164(4): 1005-1013, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30734111

RESUMO

Rice crops in South and Southeast Asian countries suffer critical yield losses due to rice tungro disease caused by joint infection with rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV). Previously, for generating RNA interference-based transgenic resistance against tungro viruses, RTBV ORF IV was used as a transgene to develop RTBV resistance in a popular high-yielding scented rice variety. The transgene from this line was then introgressed into five popular high-yielding but tungro-susceptible rice varieties by marker-assisted backcross breeding with a view to combine the resistant trait with the agronomic traits. The present work includes a resistance assay of the BC3F5 lines of these varieties under glasshouse conditions. Out of a total of 28 lines tested, each consisting of 12 individual plants, eight lines showed significant amelioration in height reduction and 100- to 1000-fold reduction in RTBV titers. The RNAi-mediated resistance was clearly manifested by the presence of virus-derived small RNA (vsRNA) specific for RTBV ORF IV in the transgenic backcrossed lines.


Assuntos
Resistência à Doença , Oryza/imunologia , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/imunologia , Tungrovirus/fisiologia , Proteínas Virais/genética , Índia , Oryza/genética , Oryza/virologia , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Interferência de RNA , Transgenes , Tungrovirus/genética , Tungrovirus/isolamento & purificação , Proteínas Virais/metabolismo , Waikavirus/genética , Waikavirus/metabolismo
12.
Virology ; 526: 117-124, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30388627

RESUMO

Rice tungro disease is caused by the combined action of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV). The RTBV is involved in the development of symptoms while RTSV is essential for virus transmission. We attempted to study the mode of action of RTBV in the development of symptoms. The tungro disease symptoms were attributed to viral interference in chlorophyll and carotenoids biosynthesis, photosynthesis machinery, iron/zinc homeostasis, and the genes encoding the enzymes associated with these biological processes of rice. The adverse effects of virus infection in photosystem II (PSII) activity was demonstrated by analyzing the Fv/Fm ratio, expression of psbA and cab1R genes, and direct interaction of RTBV ORF I protein with the D1 protein of rice. Since ORF I function is not yet known in the RTBV life cycle, this is the first report showing its involvement in regulating host photosynthesis process and symptoms development.


Assuntos
Homeostase/genética , Insetos Vetores/virologia , Oryza/virologia , Complexo de Proteína do Fotossistema II/metabolismo , Doenças das Plantas/virologia , Tungrovirus/fisiologia , Proteínas Virais/metabolismo , Animais , Meios de Cultura/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Ferro/química , Ferro/metabolismo , Fases de Leitura Aberta , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Tungrovirus/genética , Proteínas Virais/genética , Waikavirus/fisiologia , Zinco/química , Zinco/metabolismo
13.
Arch Virol ; 163(12): 3447-3449, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30159684

RESUMO

Using high-throughput sequencing, a novel waikavirus was identified in a mixed virus infection of red clover (Trifolium pratense L.). Its complete genomic sequence was determined and characterized. The virus, tentatively named red clover associated virus 1 (RCaV1), is phylogenetically related to members of the genus Waikavirus (family Secoviridae, order Picornavirales).


Assuntos
Genoma Viral , Doenças das Plantas/virologia , Vírus Satélites/genética , Vírus Satélites/isolamento & purificação , Trifolium/virologia , Waikavirus/genética , Waikavirus/isolamento & purificação , Sequência de Bases , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Vírus Satélites/classificação , Análise de Sequência de DNA , Waikavirus/classificação
14.
Virology ; 523: 64-73, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30081310

RESUMO

Rice tungro disease is caused by a complex of two viruses, Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV). To examine the RNAi-based defence response in rice during tungro disease, we characterized the virus-derived small RNAs and miRNAs by Deep Sequencing. We found that, while 21 nt/22 nt (nucleotide) siRNAs are predominantly produced in a continuous, overlapping and asymmetrical manner from RTBV, siRNA accumulation from RTSV were negligible. Additionally, 54 previously known miRNAs from rice, predicted to be regulating genes involved in plant defence, hormone signaling and developmental pathways were differentially expressed in the infected samples, compared to the healthy ones. This is the first study of sRNA profile of tungro virus complex from infected rice plants. The biased response of the host antiviral machinery against the two viruses and the differentially-expressed miRNAs are novel observations, which entail further studies.


Assuntos
Regulação da Expressão Gênica de Plantas/imunologia , Regulação Viral da Expressão Gênica , Oryza/genética , RNA Interferente Pequeno/genética , Tungrovirus/genética , Waikavirus/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/metabolismo , Oryza/imunologia , Oryza/virologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , RNA Interferente Pequeno/metabolismo , RNA Viral/antagonistas & inibidores , RNA Viral/genética , RNA Viral/metabolismo , Tungrovirus/metabolismo , Waikavirus/metabolismo
15.
Virus Res ; 255: 157-164, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031045

RESUMO

Rice tungro is the most important viral disease affecting rice in South and Southeast Asia, caused by two viruses rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV). Transgenic resistance using RNA-interference (RNAi) has been reported individually against RTBV and RTSV earlier. Here we report the development of transgenic rice plants expressing RNAi against both RTBV and RTSV simultaneously. A DNA construct carrying 300 bp of RTBV DNA and 300 bp of RTSV cDNA were cloned as the two arms in hairpin orientation in a binary plasmid background to generate RNAi against both viruses simultaneously. Transgenic rice plants were raised using the above construct and their resistance against RTBV and RTSV was quantified at the T1 plants. Levels of both the viral nucleic acids showed a fall of 100- to 500-fold in the above plants, compared with the non-transgenic controls, coupled with the amelioration of stunting. The transgenic plants also retained higher chlorophyll levels than the control non-transgenic plants after infection with RTBV and RTSV. Small RNA analysis of virus inoculated transgenic plants indicated the presence of 21 nt and 22 nt siRNAs specific to RTBV and RTSV. The evidence points towards an active RNAi mechanism leading to resistance against the tungro viruses in the plants analysed.


Assuntos
Resistência à Doença/genética , Oryza/genética , Oryza/virologia , Doenças das Plantas/virologia , Interferência de RNA , Tungrovirus/genética , Waikavirus/genética , Sudeste Asiático , Genes de Plantas , Oryza/fisiologia , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Plantas Geneticamente Modificadas/virologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tungrovirus/crescimento & desenvolvimento , Waikavirus/crescimento & desenvolvimento
16.
Biomed Res Int ; 2017: 3608042, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29201901

RESUMO

Rice tungro disease (RTD) is one of the most destructive diseases of rice in South and Southeast Asia. RTD is routinely detected based on visual observation of the plant. However, it is not always easy to identify the disease in the field as it is often confused with other diseases or physiological disorders. Here we report the development of two serological based assays for ease of detection of RTD. In this study we had developed and optimized an indirect ELISA and dot-blot assay for detection of RTD. The efficiency of both assays was evaluated by comparing the specificity and sensitivity of the assays to PCR assay using established primer sets. The indirect ELISA showed 97.5% and 96.6%, while the dot-blot assay showed 97.5% and 86.4% sensitivity and specificity, respectively, when compared to established PCR method. The high sensitivity and specificity of the two assays merit the use of both assays as alternative methods to diagnose RTD. Furthermore, the dot-blot assay is a simple, robust, and rapid diagnostic assay that is suitable for field test for it does not require any specialized equipment. This is a great advantage for diagnosing RTD in paddy fields, especially in the rural areas.


Assuntos
Immunoblotting/métodos , Oryza/virologia , Doenças das Plantas/genética , Waikavirus/isolamento & purificação , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Ensaio de Imunoadsorção Enzimática , Oryza/genética , Doenças das Plantas/imunologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Waikavirus/genética , Waikavirus/patogenicidade
17.
Virology ; 504: 88-95, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160664

RESUMO

Maize chlorotic dwarf virus (MCDV), a member of the genus Waikavirus, family Secoviridae, has a 11784 nt (+)ssRNA genome that encodes a 389kDa proteolytically processed polyprotein. We show that the N-terminal 78kDa polyprotein (R78) of MCDV acts as a suppressor of RNA silencing in a well-established assay system. We further demonstrate that R78 is cleaved by the viral 3C-like protease into 51 and 27kDa proteins (p51 and p27), and that p51 is responsible for silencing suppressor activity. Silencing suppressor activity of R78 is conserved in three divergent MCDV strains (MCDV-Severe, MCDV-M1, and MCDV-Tennessee), as well as the waikavirus Bellflower vein chlorosis virus, but was not detected for orthologous protein of Rice tungro spherical virus (RTSV-A) or the similarly-positioned protein from the sequivirus Parsnip yellow fleck virus (PYFV). This is the first identification of a virus suppressor of RNA silencing encoded by a waikavirus.


Assuntos
Genoma Viral/genética , Interferência de RNA/fisiologia , Waikavirus/genética , Waikavirus/metabolismo , Zea mays/virologia , Doenças das Plantas/virologia , Proteínas Virais/metabolismo
18.
J Virol Methods ; 240: 69-72, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27923590

RESUMO

Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes.


Assuntos
Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Escherichia coli/genética , Waikavirus/genética , Animais , Anticorpos Antivirais/biossíntese , Sudeste Asiático , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Oryza/virologia , Doenças das Plantas/virologia , RNA Viral/genética , Coelhos , Proteínas Recombinantes de Fusão/imunologia , Waikavirus/química , Waikavirus/imunologia , Waikavirus/isolamento & purificação
19.
Virus Genes ; 52(4): 521-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26983604

RESUMO

Severe losses of rice yield in south and southeast Asia are caused by Rice tungro disease (RTD) induced by mixed infection of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV). In order to develop transgene-based resistance against RTBV, one of its genes, ORF IV, was used to generate transgenic resistance based on RNA-interference in the easily transformed rice variety Pusa Basmati-1, and the transgene was subsequently introgressed to rice variety ASD 16, a variety popular in southern India, using transgene marker-assisted selection. Here, we report the evaluation of BC3F4 and BC3F5 generation rice plants for resistance to RTBV as well as for agronomic traits under glasshouse conditions. The BC3F4 and BC3F5 generation rice plants tested showed variable levels of resistance, which was manifested by an average of twofold amelioration in height reduction, 1.5-fold decrease in the reduction in chlorophyll content, and 100- to 10,000-fold reduction in the titers of RTBV, but no reduction of RTSV titers, in three backcrossed lines when compared with the ASD 16 parent. Agronomic traits of some of the backcrossed lines recorded substantial improvements when compared with the ASD 16 parental line after inoculation by RTBV and RTSV. This work represents an important step in transferring RTD resistance to a susceptible popular rice variety, hence enhancing its yield in areas threatened by the disease.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Oryza/virologia , Doenças das Plantas/genética , Transgenes/genética , Waikavirus/genética , Cruzamento , Índia , Fases de Leitura Aberta/genética , Oryza/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Interferência de RNA/fisiologia , RNA Viral/genética
20.
Arch Virol ; 160(12): 3139-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26370789

RESUMO

The complete genome sequence of a new virus isolated from a bellflower (Campanula takesimana) plant was determined. The genome of this virus is composed of monopartite single-stranded RNA of 11,649 nucleotides in length. BLAST searches of protein databases showed that the encoded polyprotein has a maximum amino acid sequence identity of 42% (with 99% coverage) to the polyprotein of the isolate Orissa of rice tungro spherical virus (RTSV; genus Waikavirus). Phylogenetic analysis strongly supports that the identified virus is a member of a new species of the genus Waikavirus. The name bellflower vein chlorosis virus (BVCV) is proposed for this new virus.


Assuntos
Campanulaceae/virologia , Genoma Viral , Doenças das Plantas/virologia , Waikavirus/genética , Waikavirus/isolamento & purificação , Sequência de Bases , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Waikavirus/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...